

Sample Unit

Authors

Brian Tickle BA James Burnett MEd Calvin Irons PhD

Contributing Author Allan Turton BEd

Series Consultants

Anita Chin MEd Jan Glazier MA Bruce Llewellyn BSc

1. A dripping tap loses 1 millilitre every minute. Complete the table to show how much water is lost over time.

	1 hour	2 hours	5 hours	10 hours	20 hours	1 day
Millilitres						
Litres						

- 2. a. Calculate how many minutes would pass before losing 1 litre. **b.** Write the same time in hours and minutes. 3. About how much water is lost in a. 1 week? _____ litres **b.** 30 days? litres litres c. 1 year? 4. This graph shows data from a different tap. 2500 Water lost (millilitres) 2000 1500 1000 500 0 8 9 10 11 5 1 2 3 4 Q 2 4 5 7 5 6 7 8 9 10 11 1 3 6 p.m. a.m.
 - a. At what time had 1 litre of water been lost?
 - **b.** How much longer did it take to lose the first litre than the second litre?
 - **5.** Loop the tap that loses water at a faster rate.

first tap second tap

These students each had three different bottles of water.

- 1. What do the students need to do before they can calculate their total amount of water?
- **2.** Figure out the total amount of water that each student has. Write your answers in litres and millilitres.

1. Imagine this container was filled with water.

OUTCOMES MS 3.3

MS 3.4

One cubic metre of water is equivalent to:

	Volume	Capacity	Mass
α.	m ³	kL	t
b.	dm³	L	kg
c.	cm ³	mL	g

2. Use the dimensions to calculate the volume, capacity and mass of water in each tank.

	Dimensions (m)		Volumo (m ³)	Capacity (L)	Mass (ka)	
	Width	Length	Height	volume (m ²)	Cupucity (L)	Muss (kg)
Tank A	4	3	2			
Tank B	2	З	2			
Tank C	2	6	4			
Tank D	1	1	0.5			
Tank E	1	1	0.25			
Tank F	0.5	0.5	1			

3. Complete the table.

	Dimensions (m)			λ (aluma (m ³)	Capacity (kl)	Mass (t)
	Width	Length	Height	volume (m-)		iviuss (t)
Tank A	2	4		64		
Tank B			5		30	
Tank C		0.5		12		
Tank D		0.25				5

Imagine a container that held 1 kL of water. If the base was 250 cm², how tall would it be?

1. a. Imagine you built this shape with base-10 ones blocks. Complete the table.

Length	Width	Height	Total number of blocks
blocks	blocks	blocks	blocks

- **b.** Write the volume of the shape. _____ cm³
- **2.** Here are the dimensions of another box shape.

Length = 8 cm Width = 3 cm

Height = 5 cm

Write how you can calculate the volume without counting blocks.

3. Use your rule above to calculate the volume of these shapes.

	Length	Width	Height	Volume
α.	5 cm	4 cm	3 cm	cm ³
b.	9 cm	6 cm	4 cm	CM ³
c.	7 cm	5 cm	5 cm	cm ³
d.	6 cm	7 cm	3 cm	Cm ³

4. Write the dimensions of some different box shapes that have the same volume. Use blocks to help.

	Volume = 36 cm ³					
	Length	Width	Height			
α.						
b.						
c.						
d.						

	Volume = 64 cm ³					
	Length	Width	Height			
э.						
F.						
g.						
า.						

1. Calculate the volume of each box. Use a calculator to help you.

2. Draw and label the dimensions of a box that has a volume less than 1000 cm³ and another box that has a volume of more than 1000 cm³. Then calculate the volume of each.

